A Green Solvent Induced DNA Package
نویسندگان
چکیده
Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms.Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering andUVmelting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration ($1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.
منابع مشابه
The investigation of the effects of synthesized Zinc oxide nanoparticles on the DNA using green chemistry
In this study, the extract of coffee powder for green synthesis of zinc oxide nanoparticles has been used because it is compatibility with the environment and it does not produce any toxic substances in the reaction. Then, the interaction of zinc oxide nanoparticles with calf thymus DNA with various spectroscopic methods such as UV-Visible, fluorescence and circular dichroism (CD) techniques wa...
متن کاملIn vitro non-viral gene delivery with nanofibrous scaffolds
Extracellular and intracellular barriers typically prevent non-viral gene vectors from having an effective transfection efficiency. Formulation of a gene delivery vehicle that can overcome the barriers is a key step for successful tissue regeneration. We have developed a novel core-shelled DNA nanoparticle by invoking solvent-induced condensation of plasmid DNA (beta-galactosidase or GFP) in a ...
متن کاملRemoval of sodium from the solvent reduces retinal pigment epithelium toxicity caused by indocyanine green: implications for macular hole surgery.
BACKGROUND s/aims: Staining of internal limiting membrane with indocyanine green (ICG) has been reported to be associated with postoperative atrophic retinal pigment epithelium (RPE) change. Here the authors examined whether removing sodium from the solvent reduces ICG induced RPE cytotoxicity. METHODS Human RPE cells were exposed to ICG (0.25 and 0.025 mg/ml) reconstituted with balanced salt...
متن کاملSCIENTIFIC REPORT Removal of sodium from the solvent reduces retinal pigment epithelium toxicity caused by indocyanine green: implications for macular hole surgery
Backgrounds/aims: Staining of internal limiting membrane with indocyanine green (ICG) has been reported to be associated with postoperative atrophic retinal pigment epithelium (RPE) change. Here the authors examined whether removing sodium from the solvent reduces ICG induced RPE cytotoxicity. Methods: Human RPE cells were exposed to ICG (0.25 and 0.025 mg/ml) reconstituted with balanced salt s...
متن کاملOptimization of a DNA Nicking Assay to Evaluate Oenocarpus bataua and Camellia sinensis Antioxidant Capacity
This study was aimed at assessing the DNA damage protective activity of different types of extracts (aqueous, methanolic and acetonic) using an in vitro DNA nicking assay. Several parameters were optimized using the pUC18 plasmid, especially FeSO4, EDTA, solvent concentrations and incubation time. Special attention has been paid to removing the protective and damaging effect of the solvent and ...
متن کامل